Hot water extraction with in situ wet oxidation: kinetics of PAHs removal from soil.

نویسندگان

  • Ali A Dadkhah
  • Aydin Akgerman
چکیده

Finding environmentally friendly and cost-effective methods to remediate soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is currently a major concern of researchers. In this study, a series of small-scale semi-continuous extractions--with and without in situ wet oxidation--were performed on soils polluted with PAHs, using subcritical water (i.e. liquid water at high temperatures and pressures, but below the critical point) as the removal agent. Experiments were performed in a 300 mL reactor using an aged soil sample. To find the desorption isotherms and oxidation reaction rates, semi-continuous experiments with residence times of 1 and 2 h were performed using aged soil at 250 degrees C and hydrogen peroxide as oxidizing agent. In all combined extraction and oxidation flow experiments, PAHs in the remaining soil after the experiments were almost undetectable. In combined extraction and oxidation no PAHs could be detected in the liquid phase after the first 30 min of the experiments. Based on these results, extraction with hot water, if combined with oxidation, should reduce the cost of remediation and can be used as a feasible alternative technique for remediating contaminated soils and sediments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extraction and Recovery of Polycyclic Aromatic Hydrocarbons in Petroleum Contaminated Soils Using Supercritical Water by Response Surface Methodology

Finding an environment-friendly and affordable method to remove contaminated soils from Polycyclic Aromatic Hydrocarbons (PAHs) has now become an attractive field for researchers, with super-critical fluid extraction being an innovative process in the field of contaminated soil treatment. Extraction with super-critical fluid is a simple and rapid extraction process that uses super-critical flui...

متن کامل

Extraction and Recovery of Polycyclic Aromatic Hydrocarbons in Petroleum Contaminated Soils Using Supercritical Water by Response Surface Methodology

Finding an environment-friendly and affordable method to remove contaminated soils from Polycyclic Aromatic Hydrocarbons (PAHs) has now become an attractive field for researchers, with super-critical fluid extraction being an innovative process in the field of contaminated soil treatment. Extraction with super-critical fluid is a simple and rapid extraction process that uses super-critical flui...

متن کامل

Desorption Kinetics of Heavy Metals (Lead, Zinc, and Nickel) Coexisted with Phenanthrene from a Natural High Buffering Soil

This work aims to investigate the competitive time-dependent desorption rate of heavy metals (lead, zinc, nickel) coexisting with phenanthrene from natural high buffering soil. Two non-ionic surfactants (Tween 80 and Brij 35) combined with disodium ethylene diamine tetraacetate salt (Na2-EDTA) were utilized as the reagents. The contaminants’ time-dependent desorption data was fitted with five k...

متن کامل

Photocatalytic Degradation of PAHs Contaminated Soil in South Pars Economic and Energy Zone with TiO2 Nanocatalyst

Heterogeneous photocatalytic degradation of Polynuclear Aromatic Hydrocarbons (PAHs) contaminated soil in the Pars Economic and Energy Zone was carried out <span style="font-size: 10pt; color: #000000;...

متن کامل

Optimization of Soil Aquifer Treatment by Chemical Oxidation with Hydrogen Peroxide Addition

Trace organic compounds (TrOCs), mostly found in secondary effluents, have a potential impact on the environment, affecting surface water, groundwater, and especially aquatic ecosystems. The present study focuses on oxidation of five selected TrOCs in column experiments, by simulating Soil Aquifer Treatment (SAT) integrated with Fenton-like reaction, using Granular Ferric Hydroxide (GFH) as a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of hazardous materials

دوره 137 1  شماره 

صفحات  -

تاریخ انتشار 2006